Methane Carbon Supports Aquatic Food Webs to the Fish Level

نویسندگان

  • Angela M. Sanseverino
  • David Bastviken
  • Ingvar Sundh
  • Jana Pickova
  • Alex Enrich-Prast
چکیده

Large amounts of the greenhouse gas methane (CH(4)) are produced by anaerobic mineralization of organic matter in lakes. In spite of extensive freshwater CH(4) emissions, most of the CH(4) is typically oxidized by methane oxidizing bacteria (MOB) before it can reach the lake surface and be emitted to the atmosphere. In turn, it has been shown that the CH(4)-derived biomass of MOB can provide the energy and carbon for zooplankton and macroinvertebrates. In this study, we demonstrate the presence of specific fatty acids synthesized by MOB in fish tissues having low carbon stable isotope ratios. Fish species, zooplankton, macroinvertebrates and the water hyacinth Eichhornia crassipes were collected from a shallow lake in Brazil and analyzed for fatty acids (FA) and carbon stable isotope ratios (δ(13)C). The fatty acids 16:1ω8c, 16:1ω8t, 16:1ω6c, 16:1ω5t, 18:1ω8c and 18:1ω8t were used as signature for MOB. The δ(13)C ratios varied from -27.7‰ to -42.0‰ and the contribution of MOB FA ranged from 0.05% to 0.84% of total FA. Organisms with higher total content of MOB FAs presented lower δ(13)C values (i.e. they were more depleted in (13)C), while organisms with lower content of MOB signature FAs showed higher δ(13)C values. An UPGMA cluster analysis was carried out to distinguish grouping of organisms in relation to their MOB FA contents. This combination of stable isotope and fatty acid tracers provides new evidence that assimilation of methane-derived carbon can be an important carbon source for the whole aquatic food web, up to the fish level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative importance of CO2 recycling and CH4 pathways in lake food webs along a dissolved organic carbon gradient

Terrestrial ecosystems export large quantities of dissolved organic carbon (DOC) to aquatic ecosystems. This DOC can serve as a resource for heterotrophic bacteria and influence whether lakes function as sources or sinks of atmospheric CO2. However, it remains unclear as to how terrestrial carbon moves through lake food webs. We addressed this topic by conducting a comparative lake survey in th...

متن کامل

Aquatic food webs

~ Organic matter from aquatic and terrestrial sources provides the carbon energy that 'drives' aquatic food webs. Most streams and rivers are heterotrophic — that is, more carbon is consumed (e.g. by animals and bacteria) than is produced within the system by aquatic plants. However, despite the presence of vast amounts of carbon in streams and rivers, only a small proportion of the total is tr...

متن کامل

Stable isotope analysis in fisheries food webs

Stable isotope analysis has been used as a technique to analyse fisheries food webs for a quarter of a century, and remains the principal method for determining energy and nutrient pathways from primary producers to consumers in aquatic ecosystems. Carbon isotope analysis has been used to distinguish autotrophs at the base of inshore and offshore fisheries food webs. The combination of nitrogen...

متن کامل

The Incredible Lightness of Being Methane-Fuelled: Stable Isotopes Reveal Alternative Energy Pathways in Aquatic Ecosystems and Beyond

We have known about the processes of methanogenesis and methanotrophy for over 100 years, since the days of Winogradsky, yet their contributions to the carbon cycle were deemed to be of negligible importance for the majority of that period. It is only in the last two decades that methane has been appreciated for its role in the global carbon cycle, and stable isotopes have come to the forefront...

متن کامل

Rescaling stable isotope data for standardized evaluations of food webs and species niches

Many human and natural events can impact aquatic populations and communities, leaving strong imprints as altered food web dynamics. Stable C and N isotopes in fish can record these altered trophic dynamics in an integrated way, and a new simple methodology is presented to extract measures of food web change from isotope measurements of fish species. Measured C and N isotope data are re-scaled a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012